Chứng Minh Bằng Nhau – Song Song, Vuông Góc – Đồng Quy, Thẳng Hàng

Ở bài viết này gia sư sư phạm xin trình bày sơ lược các phương pháp chứng minh Bằng Nhau – Song Song, Vuông Góc – Đồng Quy, Thẳng Hàng mà chúng ta thường gặp trong chương trình thi học sinh giỏi, luyện thi vào 10 của các em học sinh lớp 9.

1.Tam giác bằng nhau

a) Các trường hợp bằng nhau của hai tam giỏc: c.c.c; c.g.c; g.c.g.

b) Các trường hợp bằng nhau của hai tam giỏc vuụng: hai cạnh gúc vuụng; cạnh huyền và một cạnh gúc vuụng; cạnh huyền và một gúc nhọn.

c) Hệ quả: Hai tam giỏc bằng nhau thỡ cỏc đường cao; các đường phân giác; các đường trung tuyến tương ứng bằng nhau.

2.Chứng minh hai góc bằng nhau

-Dựng hai tam giỏc bằng nhau hoặc hai tam giác đồng dạng, hai gúc của tam giỏc cân, đều; hai gúc của hỡnh thang cõn, hỡnh bỡnh hành, …

-Dựng quan hệ giữa cỏc gúc trung gian với cỏc gúc cần chứng minh.

-Dựng quan hệ cỏc gúc tạo bởi các đường thẳng song song, đối đỉnh.

-Dựng mối quan hệ của cỏc gúc với đường trũn.(Chứng minh 2 gúc nội tiếp cựng chắn một cung hoặc hai cung bằng nhau của một đường trũn, …)

3.Chứng minh hai đoạn thẳng bằng nhau

-Dùng đoạn thẳng trung gian.

-Dựng hai tam giỏc bằng nhau.

-Ứng dụng tớnh chất đặc biệt của tam giác cân, tam giác đều, trung tuyến ứng với cạnh huyền của tam giỏc vuụng, hỡnh thang cõn, hỡnh chữ nhật, …

-Sử dụng cỏc yếu tố của đường trũn: hai dõy cung của hai cung bằng nhau, hai đường kớnh của một đường trũn, …

-Dựng tớnh chất đường trung bỡnh của tam giỏc, hỡnh thang, …

4.Chứng minh hai đường thẳng, hai đoạn thẳng song song

-Dựng mối quan hệ giữa cỏc gúc: So le bằng nhau, đồng vị bằng nhau, trong cựng phớa bự nhau, …

-Dựng mối quan hệ cựng song song, vuụng gúc với đường thẳng thứ ba.

-Áp dụng định lý đảo của định lý Talet.

-Áp dụng tớnh chất của cỏc tứ giác đặc biệt, đường trung bỡnh của tam giỏc.

-Dựng tớnh chất hai dõy chắn giữa hai cung bằng nhau của một đường trũn.

5.Chứng minh hai đường thẳng vuông góc

-Chứng minh chỳng song song với hai đường vuụng gúc khỏc.

-Dựng tớnh chất: đường thẳng vuụng gúc với một trong hai đường thẳng song song thỡ vuụng gúc với đường thẳng cũn lại.

-Dựng tớnh chất của đường cao và cạnh đối diện trong một tam giỏc.

-Đường kính đi qua trung điểm của dõy.

-Phõn giỏc của hai gúc kề bự nhau.

6.Chứng minh ba điểm thẳng hàng

-Dùng tiên đề Ơclit: NếuAB//d; BC//d thỡ A, B, C thẳng hàng.

-Áp dụng tớnh chất các điểm đặc biệt trong tam giỏc: trọng tõm, trực tâm, tâm đường trũn ngoại tiếp, …

-Chứng minh 2 tia tạo bởi ba điểm tạo thành gúc bẹt: Nếu gúc ABC bằng 1800 thỡ A, B, C thẳng hàng.

-Áp dụng tớnh chất: Hai gúc bằng nhau cú hai cạnh nằm trờn một đường thẳng và hai cạnh kia nằm trờn hai nửa mặt phẳng với bờ là đường thẳng trờn.

-Chứng minh AC là đường kớnh của đường trũn tõm B.

7.Chứng minh các đường thẳng đồng quy

-Áp dụng tớnh chất các đường đồng quy trong tam giỏc.

-Chứng minh các đường thẳng cùng đi qua một điểm: Ta chỉ ra hai đường thẳng cắt nhau tại một điểm và chứng minh đường thẳng cũn lại đi qua điểm đó.

-Dùng định lý đảo của định lý Talet.

Twitter Delicious Facebook Digg Stumbleupon Wordpress Googlebuzz Myspace Gmail Newsvine Favorites More
You can leave a response, or trackback from your own site.

This post was written by:

Đóng góp ý kiến